Final Notes before Submission 26 August 2001

This project is the first thing I’ve done in C++ other than weekly homework assignments. I underestimated its complexity. I succeeded in implementing about one-fourth of the desired functionality of the data-side components, and left the GUI component alone for now.

In a nutshell, the Control Buffer component is supposed to interface with any GUI (through variations on the Application Window component) on one side, and any database (through variations on the Data Interface component) on the other. “Control” was supposed to refer to graphical object controls, and ended up implying its role in read, write, and processing control. The Control Buffer issues queries and updates to the Data Interface in response to requests from the Application Window, and buffers the display data. There are 3 basic types of query/update which correspond to 3 basic display Views.

The Data Interface design for this Client is somewhat complex, owing to the fact that the “Task” object concept is fundamental to the new model, whereas the Client’s legacy model knows nothing of any “Task”. The Data Interface must ensure that Task, Event, Action, and Comment objects are catered to the Control Buffer in standard format, and parses records from foreign data structures to accomplish this. It must also store those objects’ data in the native format, while the native system remains essentially unaware of the behavior and requirements of the new system.

Current functionality
An Event View window should render a table of all Task data that is tagged with a single Event ID#. The Control Buffer will issue a request to the Data Interface for the data needed to populate a single Event View, and maintain an array of pointers to these Task objects. The Data Interface will read and buffer the needed data from a specified network resource, and construct Task objects the Control Buffer can point to. (The network resource should be configurable, but for now is hard-coded.) Code & output from a test program are provided with margin notes.

I planned to implement the pointer arrays in the Control Buffer as counted pointers. If the project proceeds (as I hope it will), this will be necessary because multiple View windows may refer to the same Task objects.

Some members and method signatures are shown that relate to other (not yet implemented) Views, update functions, or billing process functions, and in many cases they are commented out. I did not attempt to completely specify the interface for these, having found that everything I specify before diving into the implementation is going to change anyway.

The native system uses a certain kind of Julian date & time, so I designed date & time classes to match up the database with the presentation formats. At present, the Julian-to-date object conversion is faked with a standard date.

The Use Case proven by the Test Driver: Load the Control Buffer with data for an Event View

I left debugging messages in some of the implementation code for in case you wanted to follow the test program in the code. The following text together with the sequence diagram should work also.

The simulated trigger is that of the Control Buffer receiving a request from the Application Window to load an Event View for Event ID# “12345”. The Control Buffer class has a method GetEventTasks() that simply forwards the request to the Data Interface, which uses a method AddRecordFromDatabase() to call a method of the same name from its contained TaskFile object. The TaskFile method causes construction of a new record object by reading from the database, and adds that record to its list of pointers. This record consists of a series of Task data items related by a shared Event ID#.

Next the driver invokes tDataInterface::LoadTasks() which converts the Task items to individual objects accessible to the Control Buffer’s pointer list. The return value is a list of pointers to the newly created Task objects. That list is available

for passing to the tApplicationWindow class (not yet implemented), so it can construct the Event View window.

Other issues

Inspection of the materials I’ve provided will show that none of the design graphics match the existing implementation. The design tools helped a lot with getting started on thinking about the problem from an object orientation and in visualizing the flow of data and control. I did not attempt to re-do the design graphics, having run out of time. The basic UML remained somewhat true and very useful throughout the process. In implementing the read-and-load aspect of the Control Buffer and Data Interface Classes, I constantly referred to the sequence diagram “Open an Event View, add or modify one or more Tasks ..” so I placed it on top of the packet, just behind the UML. None of the other sequence diagrams describe what I’ve done so far, but should later when the project proceeds. The state diagrams were useful in forwarding the design process, naming methods, and generating the sequence diagrams.

I started implementation with the Exception classes, intending to build in their use systematically as I went. As the horror of my overall mistake in choosing this project began sinking in over a series of late nights, I left Exceptions where they were.

I chose to prefer using simple STL facilities over constructing more classes and methods from scratch, expecting this choice to facilitate progress on the implementation. I made a couple of attempts to use more complex STL containers, and I had difficulty accessing members and using their data. Possibly investing some time in function objects would have helped. As it was, I abandoned use of all but the STL string and vector classes. The vector is useful for a dynamic array of pointers, and is friendly with standard access methods like for-loop and operator[]. STL strings were helpful; they freed me up to pay attention to dynamic resource allocation where it impacts design issues, rather than every time I use a string.

