Description Summary

Design and implement an object-oriented, graphical user interface for the Event Logger that will deposit and retrieve data from the existing database facility. It will offer advantages of convenience for data entry, as well as the ability to more easily display and modify existing Event data. The primary objectives are to assist in beefing up the service database, to provide a robust and intuitive operator interface, and to assist in optimizing Client’s billing practices.

The fully developed application will run on MS Windows 95/98/NT/2000. For initial testing, a single instance will run in a single window on Windows 95/98. In a later stage of development, multiple instances should run concurrently, and multiple views of the same data (e.g. support task records arranged chronologically or grouped with related tasks) should occupy their own windows.

The data-entry and display environment should accommodate the dispositions both of those workers who are prefer the existing text-based interface, and those who have continued using the Excel spreadsheet for data entry. The features of the new interface should be easily learned, and together should facilitate a transition of worker habits into using both the table and form aspects to populate and query the service/billing database.

Each cell or field will accept text input. Traditional select, copy, insert, cut, and paste functions should be implemented globally. Some fields may be optionally loaded from list box or other graphical controls. Specific console events will trigger a storage and retrieval protocol for interfacing with the native database, as defined below in the Use Cases section of this document.

The Application Window will contain a menu bar, an Update button, and one or more View windows. Menu selections will be used to instantiate View windows.

The Event Summary View form layout window will present summary information for a single Event with no breakdown by Task. This will be comparable in look and feel to the present main screen of the Event Logger. Use of this view will be required in order to “close” an Event for billing and historical purposes. It will be possible for workers who have no inclination to break down Events into Tasks, to use this view exclusively, since a row in the table views will contain a subset of the fields in the Event Summary form. In using only this mode, the implication is that one Event contains exactly one Task, a minimalist perspective which some will likely hold. Certain fields (see table view descriptions below) will be masked and validated, and/or loadable from graphical control objects such as list boxes.

The table aspect will present a spreadsheet-style application window with alternate Views, standard menus, drop-down list boxes, and other graphical control objects as needed. The list boxes will be stocked with appropriate text identifiers (e.g. Customer Name, Support Type) to be used in populating certain table columns. For initial testing, each view will contain only data for a single support worker. In a later stage, at least one of the view types may be enabled to display data compiled from a selection of workers.

Each support Task will occupy exactly one table row. Each Task record has attributes of time, date, and Support Type (each shown its own table column), and is keyed to a specific support Event (whose ID is shown in its own column). An Event is composed of one or more Tasks.

The Daily View will provide a table for entry and display of support task data arranged chronologically: a table section will represent a portion of one worker’s support Tasks for one day. This is to afford convenience in keeping a running account of activities, while automatically associating Tasks with their parent Events. A filled-in section of this table view will typically show a listing of Tasks ordered heterogeneously with respect to Type and Event – the ordering will be by time only.

The Event View table will present Tasks grouped with all other Tasks of a single Event. The column arrangement will be basically the same as in the chronological view, and Task rows will be arranged chronologically, but the selection will be by Event. This affords a unified view of the work done on that Event, and will be useful for billing purposes. Data entry and display should be enabled in this view just as in the Daily View described above.

Another view (to be implemented later: TBIL) may show Tasks selected by Support Type and date range, and sorted chronologically. This could be useful in characterizing workload or performance. This view was referred to above as being a candidate for compiled data from a selection of workers.

Another view (TBIL) may show Tasks grouped by Customer and date range, and sorted first by Event# then chronologically by Task. This could be useful for billing purposes. This view is a candidate for compiled data from a selection of workers.

These data entry and display facilities will be coupled to the existing proprietary native database. (A view of existing resources was suggested above in the Needs Analysis section of this document.) Specific, limited database modifications or additional storage requirements may be engendered by the graphical interface enhancement. A description (below in Use Cases) of relevant native structures and their correspondence to our class model will serve to define a storage and retrieval interface. Essentially, each Event will correspond to a database record whose fields store Task data, as well as data belonging to the Event but not to any of its individual Tasks.

