Commentary on the Requirements Statement: Abstract
 26 August 2001

None of the Views got implemented. I did take care in the design and implementation of the classes in Control Buffer & Data Interface sections, to prepare the way for the Views to work smoothly with the data engine. As I made a transition in my objective from providing a fully functional application to simply loading in data to prove part of the concept, I continued assuming that decisions made at each stage will impact a full implementation later.

The sequence diagrams together with the UML provided both a road map for the coding and some unifying principles. For example, I first thought of the Task objects in the Data Interface creating their own counterparts in the Control Buffer, and the sequence diagram shows that. (On the write pathway the roles would reverse; Task objects from the Control Buffer would magically update their counterparts in the Data Interface.) I wanted to limit the interactions between Control Buffer and Data Interface, to enhance modularity – but my thinking was naive. I had to learn that a smoother way to construct objects for tControlBuffer was to go through a tDataInterface method that uses a tControlBuffer argument, and those newly created objects needed to be indexed somehow by tControlBuffer, not just free-floating. Likewise the Task objects in the Data Interface need to be indexed by tDataInterface, and not free agents. This lesson had to do with the difference between stack and heap objects, and also with using class relationships to assign responsibilities. In this way, limiting the interaction between “blocks” in the system diagram is realized as defining class interactions, which is an object-oriented design concept. Now I can specify the interface between tControlBuffer and tDataInterface in terms of class methods and function parameters. But the notion of isolating the system “blocks” is still valid for good reasons, and the sequence diagram helped remind me of that each step of the way.

Regarding stack vs. heap objects, yes I do have to be concerned about the context in which I create an object, and whether it’s going to stay around when the context goes away. At one point I was wanting to string lots of things together on one line:

// construct a new TaskBuf object & add its pointer to array in Control Buffer

objControlBuffer.AddTask(&tTaskBuf(*this));

This was really great as long as I didn’t leave the function I was in. After spending a while on this, I found it useful to return the newly created object:

tTaskBuf objTaskBuf(*this);

objControlBuffer.AddTask(&objTaskBuf);

. . .

return objTaskBuf;

That seemed better for awhile, but I was still using a tTaskRec class method and a tTaskRec object that was eventually going away and leaving pointers unattached to data. I finally moved the creation & assignment of tTaskBuf objects over to tControlBuffer::AddTask(tTaskRec& taskToAdd), which included

tTaskBuf* ptrTaskBuf = new tTaskBuf(taskToAdd);

and that showed signs of lasting until the tTaskBuf memory was deleted and the tControlBuffer object destroyed.

Another issue was in creating tTaskBuf objects, should I overwrite any that are already present, or delete them and re-construct? It’s a performance issue since the effect is the same either way, and would any performance gain outweigh the time spent deciding? Also these objects should be reference-counted, and the question arises, should you update an object that is currently being shared? I decided to say yes to the second question, and have anyone who uses the program learn that whenever they hit the “Update” button, any and all affected Views will be updated. The obverse of that principle is that nothing of multiple Views is really valid until some View is updated, then that material becomes valid and all other Views follow suit. On the first question, I decided to keep a new flag “theNewFlag” in tTaskBuf so the update method can decide whether to overwrite or delete and reconstruct.

The existing code could benefit from spending some time going through and eliminating things like runaway friend classes and extraneous constants. I found it easier to declare a friend class than to limit friendship to specific functions.

Display & storage format translation occupied much of my effort in coding. Storing in class objects gave me tools for enabling the format conversions. For example, the native engine stores dates & times in Julian-style integers, but delimited strings are preferred for display, and an advanced GUI will allow multiple formats. The class design abstracts the date & time info so it can be converted “any which way”. I started off trying to provide a declaration for every conceivable conversion, before realizing only certain conversions are needed.

The coding process began clarifying the need for configuration settings to reside in the Control Buffer section. These are intended to be accessible through a menu in the Application Window. Network path and file specifications, date/time formats, and perhaps certain exception resolution choices could be configured this way.

In the process so far, the essential qualities of the native database formats have been characterized. Writing operations should be easy to define after having worked out the read methods.

What has not been touched yet is the process of closing an Event for billing, which will be non-trivial and a centerpiece of the new system. Also nothing has been done about the Action record, (check boxes etc. for what work was done) which is completely new (not being stored at all on the native system) and supposed also to be a main attraction. These combined with the GUI are important – there is no reason to track and manipulate Tasks unless they are going to provide business value, such as could be gained by using them in closing Events for billing.

1
1

