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Introduction 
 
The signal r at the receiver of a communication system is modeled as function of time: 
 
 r(t)  =  ŝ(t) · c(t) · h(t)  +  n(t) 
 
where ŝ is the complex baseband modulation signal, c is the carrier, h is the channel response, 
and n is channel noise. When baseband modulation is performed on an information bit stream, 
the number of bits encoded per symbol is constant log2M, with M representing the size of the 
symbol set. When the phase of the modulated signal is used to encode information into symbols, 
the method is known as M-ary phase shift keying (MPSK). 
 
The complex baseband MPSK signal is 
 

ŝ(t)  =  (ES)½ · exp[-j · (2π / M) · m(t) + θ0] 
 
where ES is the energy per symbol,  θ0 is a constant phase offset, and m(t) ε {0, 1, 2, … , M-1}. 
We can see that for each of the M values of m, a unique symbol (complex signal value) results. 
 
In a physical wireless communication system, these symbols are modulated onto a high-
frequency carrier, and the resulting bandpass signal is transmitted into the atmosphere. The 
transmitted signal is subject to channel fading h(t) and noise n(t). If at the receiver, fading 
compensation can be performed on the detected baseband component, then all that remains is to 
recover the original information from the noise-affected symbol set. 
 
In this simulation, we focus on 8PSK baseband modulation and demodulation in the presence of 
Rayleigh flat fading and additive white Gaussian noise (AWGN). Carrier modulation and 
demodulation are removed from the process without effect. Using Matlab, a bit stream is 
translated into 8PSK symbols. The symbol set is multiplied by a fading function and 
contaminated by noise. The fading is then removed by applying numerical division, and from the 
resulting symbol set is derived a best estimate of the original bit stream by minimum Euclidean 
distance approximation. Appendix I (Project 2 Procedure) gives details of the theory and 
procedure. 
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Core implementation 
 
The project was implemented as an m-file: 
 
% project2.m 
% Simulate a wireless channel using 8PSK. 
% Find BER for various Eb/No 
% D.Bozarth, CES 544, Sonoma State University 
% 03-31-07 
% 
graphBiasFlg = 1;   % 0 => Allow (#bit errors) == 0. 
                    % 1 => Ensure min (#bit errors) == 1. 
%                     
bsz = 486;      % length of binary sequence (one frame) 
Es  = 1;        % energy per symbol 
Rs  = 24e3;     % symbol rate, baud 
fD  = 200;      % max Doppler frequency, Hz 
ni  = 200;      % number of iterations used to determine BER 
% 
EbN = [0  5 10 15 20 25]; % bit energy per noise, dB 
ben = [0  0  0  0  0  0]; % counted Bit Errors 
ber = [0  0  0  0  0  0]; % calculated Bit Error Rates 
 
format short e; 
 
t1 = cputime; 
for i = 1:size(ber, 2) 
    be = 0 ; % number of bit errors detected 
 
    for j = 1:ni 
        % Generate a random binary sequence. 
        [Bt] = zeros(1, bsz); 
        for k = 1:bsz ; Bt(k) = (rand(1, 1) > 0.5); end 
 
        % Transmit & receive the frame. 
        [Br] = frameLink_8PSK( Bt, Es, Rs, fD, EbN(i) ); 
 
        % Compare with original sequence and find BER.  
        dif = abs(Bt - Br); 
        be = be + sum(dif); 
    end 
 
    if (graphBiasFlg == 1) 
        if be == 0; be = 1; end 
    end 
    ben(i) = be; 
    ber(i) = be ./ (bsz * ni); 
end 
t2 = cputime; 
elapsed = t2 - t1 
 
ben 
ber 
semilogy(EbN, ber); 
 
% End of program. 
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The building block modules: 
 
function [Br] = frameLink_8PSK(Bt, Es, Rs, fD, EbN) 
% Simulate one frame 8PSK link. 
% Br: 1 x n vector: Received bit stream after compensation & demodulation. 
% Bt: 1 x n vector: Bit stream to be transmitted. 
%   Precondition: Length of Bt corresponds to exactly one frame. 
% Es: Energy per symbol (no dimension) 
% Rs: Desired symbol rate, baud 
% fD: Max Doppler frequency, Hz 
% EbN: Bit energy per noise, dB 
% 
% CES 544, Sonoma State University 
% D.Bozarth  
% Built 03-31-07 
% Mod 04-19-07: Corrected na (noise amplitude). 
% 
bsz = size(Bt, 2);  % length of binary sequence 
ssz = bsz / 3;      % length of symbol sequence 
Ts = 1 / Rs;         % symbol period, s 
 
% Convert to complex baseband. 
C = EightPSK_mod(Bt, Es); 
 
% Transmit with flat Rayleigh fading. 
N = ssz; 
h = Rayleigh(N, fD, Ts); 
Y = C .* h(2, :); 
 
% Add noise and form the received signal. 
na = sqrt( Es / (3 * 2 * 10 ^ (EbN / 10)) ); % noise amplitude 
n = zeros(1, ssz); 
for k = 1:ssz; a = randn(1, 1); b = randn(1, 1); n(k) = na * (a + i*b); end 
r = Y + n; 
 
% Receiver fading compensation. 
rc = r ./ h(2, :); 
 
% Demodulation -> binary sequence at receiver. 
Br = EightPSK_demod(rc, Es); 
 
% End of program. 
 
 
function [X] = EightPSK_mod(B, e) 
% Returns a vector of complex numbers representing the complex baseband 
% symbols derived from a bit stream. 
% Arguments: 
%   B is a vector of binary digits. 
%   e is the energy per symbol. 
%  
table = [3*pi/4 3*pi/2 pi/2 7*pi/4 pi 5*pi/4 pi/4 0]; 
table = sqrt(e) * exp(i .* table); 
n_B = size(B);  % B is a (1 x n) vector. 
n_B = n_B(2);   % Second element is the #columns in B. 
n_sym = floor(n_B ./ 3); 
X = zeros(1, n_sym); 
ptr = 0; 
 
for k = 0:(n_sym - 1) 
    ptr = k * 3 + 1; 
    a3 = B(ptr:(ptr + 2)); 
     
    ndx = a3(1)*4 + a3(2)*2 + a3(3)*1 + 1; 
    X(k + 1) = table(ndx); 
end 
 
% end of program 
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function [B] = EightPSK_demod(X, e) 
% Returns a bit stream derived from 8PSK demodulation. 
% Arguments: 
%   B is a vector of complex numbers representing complex baseband symbols. 
%   e is the energy per symbol. 
% 
% D.Bozarth, CES 544, Sonoma State University 
% 03-31-2007 
% 
s_tbl = [3*pi/4 3*pi/2 pi/2 7*pi/4 pi 5*pi/4 pi/4 0]; 
s_tbl = exp(i .* s_tbl); 
b_tbl = [0 0 0 ; 0 0 1 ; 0 1 0 ; 0 1 1 ; 1 0 0 ; 1 0 1 ; 1 1 0 ; 1 1 1]; 
 
n_X = size(X);  % X is a (1 x n) vector. 
n_X = n_X(2);   % Second element is the #columns in B. 
n_B = n_X .* 3; 
B = zeros(1, n_B); 
ptr = 0; 
 
for k = 0:(n_X - 1) 
    ptr = k * 3 + 1; 
    x = X(k + 1) ./ sqrt(e); 
     
    % Euclidean distance weight function - Neural Net Toolbox 
    D = dist(s_tbl', x); 
    [m, ndx] = min(D); 
     
    seq = b_tbl(ndx, :); 
     
    B(ptr + 0) = seq(1); 
    B(ptr + 1) = seq(2); 
    B(ptr + 2) = seq(3); 
end 
 
% end of program 
 

 
Calculations 
 
Maximum Doppler shift. For f = 1800 MHz and v = 120 km/hr, fD = 200 Hz. 
 
Variance of the noise. Since the real and imaginary noise components each have variance 1, the 
variance of the noise envelope is: 
 
 var(n) =  ( 12 + 12 ) · (na) =  2 · (na)^2    
 
where (na) is the noise amplitude. 
 
Noise amplitude. For ES = 1, M = 8, and Eb/N0 = 1,  
 
 ES = 3 · var(n)  =  3  · 2 · (na)^2  =  1 
 
 (na)  =  sqrt(1/6)  =  0.40825 
 
Noise amplitude is calculated by the function frameLink_8PSK(), using the above assumption 
for noise variance.  
  
 (na)  =  sqrt( ES / [6 · 10^( (Eb/N0) / 10 )] ) 
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Results 
 
The simulation was run using 200 and 100000 iterations. An expression for symbol error rate in 
terms of  M and SNR1 was used to plot theoretical Bit Error Rate vs. Eb/N0. 

 
 
 
Regarding the theoretical plot, we know that SNR = (Eb/N0) · (RS/B) · log2M, where RS is symbol 
rate and B is bandwidth. Assuming (B = RS) yields an expression for SNR in terms of (Eb/N0). 
This result was used to produce the above graph. 
 
Under a different assumption2  (B = 2 · RS), the theoretical plot varies widely from the 
simulation results, and is not shown here. 
 
The Matlab code used to form the theoretical function is shown below. 
 

                                                      
1 J.Wu, C.Xiao, N.Beaulieu. “Optimal Diversity Combining based on Noisy Channel Estimation,” in IEEE 
Communications Society 0-7803-8533-0, 2004, p.216 
2 Haykin, Simon, Communication Systems (4th Edition), John Wiley & Sons, 2001, p. 368 
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function [X] = ber_MPSK(M, EbN) 
% Return the theoretical Bit Error Rate corresponding to a given Eb/No. 
% Assume M-ary phase shift keying. 
% M: Number of bits per symbol   
% EbN: vector: Bit energy per noise, dB 
% 
% CES 544, Sonoma State University 
% D.Bozarth  
% Built 04-19-07 
% 
g = 10.^(EbN/10) * log2(M) / 1; % Signal-to-Noise ratio 
 
gs = g * sin(pi/M)^2; 
gss = sqrt(gs ./ (1 + gs)); 
 
ser = (M-1)/M - gss .* (0.5 + (1/pi) .* atan( gss .* cot(pi/M) )); % Symbol error rate 
X = ser ./ log2(M); 
% End of program 
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