
Implementing a noise-tolerant localization algorithm

David Bozarth
Engineering Science Department, Sonoma State University, Rohnert Park, CA 94928

A published algorithm for localizing wireless sensor nodes in a planar network was partially
implemented in a C++ design. The algorithm features tolerance to communication noise and
accurate localization of any nodes that meet readily determined criteria. The implementation
succeeded through the first step of a three-step process.

Introduction

In many sensor network applications, data acquired from the network must include a reliable
spatial component in order to be useful. Therefore information on the relative locations of
network nodes is needed. If the network is deployed in a non-deterministic manner – its
components being dropped to the ground from an aircraft, for example – then localization
becomes a critical aspect of initializing the network.

For low-cost wireless sensors with limited communication range, it is desirable to design
localization capability into the network itself. Information required to map the network must be
obtained, passed and processed among the sensor nodes. Assuming the network nodes are all the
same type of device, and the device communication range is at least twice the sensing range, then
sensor coverage of an area implies network connectivity over the area [1].

Typically localization of a large network is built up in tree fashion from local clusters, with
processed information flowing toward the root [2]. The basic currency of this process is range
information.

Problem scenario

A network of wireless sensors is arranged in two dimensions. Their relative locations are
unknown. Range measurements can be made by signaling between sensors, but these signals
may contain noise sufficient to introduce ranging error. Determine the location of each sensor
relative to a designated origin.

The model

For this discussion, a “device” is a wireless sensor network node. Two devices are understood to
be “neighbors” if they can communicate directly over the wireless channel. A “cluster” is a
subset of the network whose devices are all neighbors.

The foundation of the algorithm is the “robust quadrilateral” - a collection of four neighboring
devices, whose communication links are modeled as straight lines. These mutual links form three
triangles and one quadrilateral. A “robust” triangle is one whose smallest interior angle has a
specified minimum size. If all three triangles are robust, then the quadrilateral is robust.

 1

The virtue of being robust is in minimizing ambiguity inherent in determining location based on
range measurements [3]. Figure 3 demonstrates that different network graphs may possess
exactly the same edge lengths. With a lower bound on the smallest angle among the transmission
lines between the nodes of the quadrilateral, the probability of range measurement noise causing
a node to be located on the wrong side of a flex line is reduced.

With robust quadrilaterals identified in the network, a meta-graph may be constructed using
robust quads as vertices. This “overlap graph” has an edge for each instance of two vertices
sharing three common devices. The overlap graph (Figure 6) can then be used to determine the
relative locations of each device in the network [3].

 2

The Algorithm

For a given cluster, each device belonging to one or more robust quads can be localized with
respect to a single reference device. This is accomplished by a sequence of two algorithms [3]
(and construction of the overlap graph). The first algorithm determines all robust quads in the
cluster. The second computes the positions of each robust-quad-contained device in the cluster.

 measurement noise.

 3

Methods

My objective was to develop working code that could demonstrate the operation of the algorithm
on a data set representing a small number of wireless nodes. A class and dataflow diagram of the
system is shown (Figure 7). Each Device object has the potential to regard itself as the origin
node of its cluster.

Figure 7

From its Network interface, the Device obtains a set of range measurements. Each Device must
be aware not only of its own RangeSet, but also of the RangeSets of all other Devices in its
cluster.

The output of Algorithm One is a QuadSet: a collection of Quad objects, each of which is merely
a list of Device ID’s. Then the OverlapGraph must be formed (the second step in the process).
The OverlapGraph serves as input to Algorithm Two (the third step in the process). The output
from Algorithm Two is the table of relative locations for each qualified Device in the cluster.

The Device class public method localize() implements the three-step process. It calls the methods
buildQuads() (Algorithm One) and buildOverlapGraph(), then implements Algorithm Two by
iterating through the connected component(s) of the OverlapGraph in a breadth-first search
(Appendix – Device.api.h, Device.h, and Device.cpp).

buildQuads() uses a private constant method isRobust(const double, const double, const double)
that returns a boolean answer to the question, Do the three supplied edge distances represent a
robust triangle? This method uses the Law of Cosines to determine each interior angle, and
compares the smallest to a threshold set according to desired noise performance (Figure 8). The
design tradeoff is between localizing a larger proportion of the network nodes (using a smaller
value of c) and achieving a lower probability of noise-induced localization error (using a larger
value of c).

 4

Figure 8

Results

I succeeded with Algorithm One, using a single Quad (Figure 9).

Figure 9

For my project the RangeSets for all cluster Devices were provided by a text file, shown below
for a single Quad. The file format provides for listing the network ID of each cluster Device,
followed by the list of its range measurements. Thus, the below text file represents a
RangeSetTable object. (In practice each Device would obtain its own RangeSet, then would
transmit its range data to all others in the cluster.)

 5

h000000000001
h000000000002 3000.0
h000000000003 5000.0
h000000000004 3535.53
h000000000002
h000000000001 3000.0
h000000000003 4000.0
h000000000004 5622.5
h000000000003
h000000000001 2500.0
h000000000002 4000.0
h000000000004 3535.53
h000000000004
h000000000001 3535.53
h000000000002 5622.5
h000000000003 3535.53

The text file output from Algorithm One is shown below. It represents a series of overloaded
‘<<’ operators belonging to the Device, Network, RangeSetTable, and QuadSet classes. The
QuadSet listing at the end shows that the method buildQuads() correctly found and named the
one robust quad in this cluster.

DEVICE ID: h000000000001
Threshold constant: 3
Noise sigma: 0.5

NETWORK:
Hardware address: h000000000001
Noise tolerance: 0.1

Device target:
c:\Documents and Settings\Owner\My Documents\School\CES 512\Project\
h000000000001.txt

Network target:
c:\Documents and Settings\Owner\My Documents\School\CES 512\Project\
network.txt

LOCAL RANGE SET:
h000000000002 3000

h000000000003 5000

h000000000004 3535.53

CLUSTER RANGE SETS:

Range Set for Device h000000000001
h000000000002 3000

h000000000003 5000

h000000000004 3535.53

Range Set for Device h000000000002
h000000000001 3000

h000000000003 4000

h000000000004 5622.5

Range Set for Device h000000000003
h000000000001 2500

h000000000002 4000

h000000000004 3535.53

 6

Range Set for Device h000000000004
h000000000001 3535.53

h000000000002 5622.5

h000000000003 3535.53

QUAD SET:
QuadID:
h000000000001_h000000000002_h000000000003_h000000000004

Color = 0

Pred cessor: e
None

Summary

In one simple test case, Algorithm One was shown to identify a robust quadrilateral. The next
step would be to build the simple overlap graph and implement Algorithm Two for determining
the locations of three nodes relative to one. This would set the stage for further testing on more
complex data sets. At some point, transition to an emulator platform or a TinyOS implementation
might be practical.

Use of an object-based design aided me in translating the abstraction of Algorithm One as
presented in the paper – which takes some confusing turns and in which not all steps are shown.
It is not clear that there is overall merit in this approach, though. Perhaps too much time was
spent on building and testing class features.

References

[1] Sahni S, Xu X. “Algorithms For Wireless Sensor Networks”. University of Florida.
http://www.cise.ufl.edu/~sahni/papers/sensors.pdf

[2] Culler D, Estrin D, Srivastava M. “Overview of Sensor Networks”. IEEE Computer 37:8,
Special Issue in Sensor Networks, Aug 2004. pp.41-49.

[3] Moore D, Leonard J, Rus D, Teller S. “Robust Distributed Network Localization with Noisy
Range Measurements”. MIT. http://cgr.csail.mit.edu/netloc/sensys04.pdf

 7

