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Homework 4 : Peg-Solitaire problem 
 
The problem is to determine whether an arbitrary square Peg-Solitaire board configuration can 
be played to a win. If the board can not win, then report that fact. Otherwise, demonstrate a 
sequence of winning moves. 
 
I used the Java BigInteger class to represent an 8 by 8 board configuration in a natural manner, 
with the lowest-order bit representing the upper-left corner position, bit one representing the next 
position to the right in the topmost row, bit 8 representing the leftmost position in the second row 
from the top, … , and bit 63 representing the bottom right corner position. 
 
Keyboard input is inverted left-to-right before representing the board internally, and internal 
representation is inverted left-to-right before display on the screen. This is to maintain 
consistency, since standard keyboard-input conversion interprets digits to the left side as higher-
order than those to the right, and since this application calls for the leftmost digit to represent the 
low-order bit. 
 
Each jump generates a new board configuration, which may or not be a winning configuration. 
On facing a new board configuration, the only constructive choices available to the player are: to 
determine that the board is a winner, or to determine that the board is a loser, or to perform a 
jump. 
 
The algorithm relies on a value k defined as: 
 
 k = min( n / dim, n % dim ) ,  
 

where n and dim are non-negative integers, 
dim is the board dimension, and 0 <= n < dim*dim. 

 
The definition implies that k is a non-negative integer and that 0 <= k < dim. 
 
The definition results in “corner” or “base” k-values at positions 
 
 k + k * dim,  
   
Thus n=0 is the base for k=0, n=9 is the base for k=1, and so on. 
 
From the “base” value for a given k, the n-values assigned to the k-category can be determined 
from  
 
n = base, base + 1, ..., base + limit, base + dim, base + 2*dim, ..., base + 
limit*dim, 
 
 where limit =  dim – (k + 1). 
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This plot of the k-number for each position in the board with dim = 8, represents a Young 
tableau.  
 
    0   0   0   0   0   0   0   0 
                        0   1   1   1   1   1   1   1 
                        0   1   2   2   2   2   2   2 
                        0   1   2   3   3   3   3   3 
                        0   1   2   3   4   4   4   4 
                        0   1   2   3   4   5   5   5 
                        0   1   2   3   4   5   6   6 
                        0   1   2   3   4   5   6   7 
 
The algorithm’s basic plan to search for a new move is to scan the current lowest-k region first, 
then if that fails to turn up a jump, then scan the next higher-k region. On encountering region 6, 
no more moves are possible (since a move requires either 3 contiguous horizontal positions, or 3 
contiguous vertical positions). At that time the only constructive choice is to scan the entire 
board, looking for a singular filled position. In this case the board wins; otherwise it loses. 
 
The next board move is determined completely by the existing board, the current k-value, and an 
index of the linear “progress” within the current k-based search for moves. This ensures that the 
function call and return mechanism can serve as the path for backtracking. 
 
Intuitively, since each move removes one peg from the board, and since the “flow” of new 
moves tends from top left to bottom right of the board, we can visualize the sequence of new 
boards “running out” of possible new moves in the upper left region, and eventually focusing on 
the lower right region. As the board becomes more sparse, the likelihood of finding a winning 
configuration increases – as long as a path for jumps remains among the remaining pegs. In other 
words, for a win the board needs to thin out, but not get too thin too quickly. 
 
A difficulty is that when a move is found and a new board generated, this may be the same board 
that was previously checked. If so, then checking this board completely will entail repeating all 
the moves that occurred before as well. This results in exponential running time. To improve 
performance, a hashtable is employed to “memoize” losing board configurations so that they 
would not have to be repeatedly checked, thereby generating other configurations to check, etc. 
 
There were optimizations that could have been fashioned to shave constant-time performance, 
but these would not be significant compared with the performance improvement incurred by 
using the hashtable. 
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Algorithm: 
 
BOOLEAN win (k, board) 
 
 if k > 5 then 
  // no new board move is possible starting from here 
  count all the ones in the board and RETURN true or false 
 
 if this board is in the hashtable, then RETURN false 
 
 kk = k * 8 + k    // gives the "corner" position of the new row/column 
 
 for i = 0 to (8 - k) 
 
  if a jump (new board move) exists in the right-horizontal triplet 
starting with (kk + i), then 
    
   k0 = k < 3 ? 0 : k - 2  // need to re-check the band 
of 2 k-numbers before this one 
 
   BOOLEAN flag = win(k0, new_board) 
 
   if flag == TRUE then RETURN flag, 
    else write new_board to hashtable 
 
  if a new board move exists in the low-vertical triplet starting 
with (kk + i), then 
 
   k0 = k < 3 ? 0 : k - 2 
 
   BOOLEAN flag = win(k0, new_board) 
 
   if flag == TRUE then RETURN flag, 
    else write new_board to hashtable 
 
  if a new board move exists in the right-horizontal triplet 
starting with (kk + i * 8), then 
 
   k0 = k < 3 ? 0 : k - 2 
 
   BOOLEAN flag = win(k0, new_board) 
 
   if flag == TRUE then RETURN flag, 
    else write new_board to hashtable 
 
  if a new board move exists in the low-vertical triplet starting 
with (kk + i * 8), then 
 
   k0 = k < 3 ? 0 : k - 2 
 
   BOOLEAN flag = win(k0, new_board) 
 
   if flag == TRUE then RETURN flag, 
    else write new_board to hashtable 
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Sample output 
 
Elapsed time: 0 hrs 0 min 6.438 sec 
 
Final hash table size = 15632 
Hashing all failures. 
 
It is possible to win, starting from this board. 
 
A winning series of moves is: 
 
00100100 01010011 01100001 00010001 00100010 00000011 00010110 00010110 
01100100 00010011 00100001 00010001 00100010 00000011 00010110 00010110 
00010100 00010011 00100001 00010001 00100010 00000011 00010110 00010110 
00000100 00000011 00110001 00010001 00100010 00000011 00010110 00010110 
00000100 00010011 00100001 00000001 00100010 00000011 00010110 00010110 
00000100 00010100 00100001 00000001 00100010 00000011 00010110 00010110 
00000000 00010000 00100101 00000001 00100010 00000011 00010110 00010110 
00000000 00010000 00100100 00000000 00100011 00000011 00010110 00010110 
00000000 00010000 00100100 00000000 00100011 00010011 00000110 00000110 
00000000 00010000 00100100 00000010 00100001 00010001 00000110 00000110 
00000000 00010000 00100100 00000011 00100000 00010000 00000110 00000110 
00000000 00010000 00100100 00000100 00100000 00010000 00000110 00000110 
00000000 00010100 00100000 00000000 00100000 00010000 00000110 00000110 
00000000 00010100 00100000 00000000 00100000 00010000 00001000 00000110 
00000000 00010100 00100000 00000000 00100000 00010000 00001000 00001000 
00000000 00010100 00100000 00000000 00100000 00011000 00000000 00000000 
00000000 00010100 00100000 00000000 00100000 00100000 00000000 00000000 
00000000 00010100 00100000 00100000 00000000 00000000 00000000 00000000 
00000000 00110100 00000000 00000000 00000000 00000000 00000000 00000000 
00000000 00001100 00000000 00000000 00000000 00000000 00000000 00000000 
00000000 00010000 00000000 00000000 00000000 00000000 00000000 00000000 
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Results 
 
I ran the program on two machines: 
 
(1) HP Pavilion tower 
 AMD 1.0GHz CPU 
 256K cache, 200 MHz front side bus 
 512MB SDRAM 100MHz 
 
(2) Toshiba Satellite notebook 
 Pentium4 1.6GHz CPU 
 2MB L2 cache, 400 MHz front side bus 
 512MB DDR RAM 
 
The running times for the default starting pattern were: 
 
 
Machine hash all failures hash failures at depth 15 no hashing 
Pavilion 6.4 s 22 m 36 m
Satellite 2.2 s 8.5 m 16 m
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