
Record/Playback
Simulator

A Record/Playback method for simulating a
device-under-test (DUT)

• David Bozarth (M.S. Candidate)

• Sue Wood (Product Development Engineer)

Contemporary test & measurement platforms acquire physical signal samples and
process these digitally. The processing software of such an instrument must be
carefully designed and tested. Sample error contributions propagate through digital
processing stages, introducing uncertainty that can be costly to remedy or work around
during performance testing of the instrument software.

We describe a method for mitigating this uncertainty, and we outline the design of a
working software system that employs the method.

The method also suggests a potential side benefit: elimination of costly instrument
hardware used in software development, by moving software testing activities onto
general-purpose PC platforms that run the instrument processing software.

Record/Playback
Simulator

Test & Measurement
Basic Setup

-$- PROBLEMS TO ADDRESS -$-

instrument software must be tested *
repeatable data sets for software testing

random & systematic error
expensive setup/calibration
store only the processed data!

cost & bulk of the instrument platform

error

Record/Playback
Simulator

A simple idea for reducing costs and gaining leverage in testing

Record/Playback
Simulator

Record Mode Playback Mode

Record/Playback Simulator

CPU & User Interface

Data Acquisition &
Conversion

DUT

INSTRUMENT PLATFORM

SIMULATOR
(Record)

CPU & User Interface

INSTRUMENT PLATFORM

SIMULATOR
(Playback)

Record/Playback
Simulator

CPU & User Interface

Data Acquisition &
Conversion

DUT

INSTRUMENT PLATFORM

SIMULATOR
(Record)

SIMULATOR

CPU & User Interface

PC WORKSTATION

(Playback)

Playback of recorded samples by “Virtual Instrument”

Record/Playback
Simulator

Glossary of Terms

Sample collection of signal sample values that represents a
single atomic measurement event (data point)

Sweep ordered sequence of Samples associated with
a sweep event performed by the instrument hardware

Simulator design or implementation of a Record/Playback
Simulator software system

Instrument system that runs software, interfaces with a
Simulator, and processes Samples

State Simulator-dependent subset of Instrument state
(variables that are critical for Simulator performance)

Operator human or program control of Instrument & Simulator

Record/Playback
Simulator

Basic Requirements

collect Samples from DUT
stimulus and response signals
include all noise & drift

store Samples in a file
portable
editable
algorithmic model

retrieve and playback Samples
target Instrument
Virtual Instrument

Sample - Sweep - File

A Sweep is a sequence of Samples.
A File is a container of Sweeps ordered

sequentially.

Record/Playback
Simulator

Practical concerns

State at time of Playback may have to match record-time State
scaling of independent variable
interpretation of Samples

Virtual Instrument may require limited hardware emulation
timing of events
user interface

Samples - raw value may not have explicit real-world meaning
mathematical transformation
modeling or simulation

Record/Playback
Simulator

Simulator-Instrument architecture

Timing & control path for Virtual Instrument shown in red.

Record/Playback
Simulator

The fundamental use case

• A physical instrument has State A.
Operator addresses this instrument.

• Operator sets Simulator FileSpec = Z.
• Operator sets Simulator Mode = Record.
• Instrument performs a sequence of n sweep events,

processing Samples from the SUT.
• Operator sets Simulator Mode = Off.
…
• Some Instrument has State A and can access file Z.

Operator addresses this instrument.
• Operator sets Simulator FileSpec = Z.
• Operator sets Simulator Mode = Playback.
• Instrument performs a sequence of n sweep events,

processing Samples from file Z.
• Operator sets Simulator Mode = Off.

Record/Playback
Simulator

Simulator-Instrument architecture …

… with internal partition of Simulator.

Record/Playback
Simulator

Simulator functional blocks

SimControl
stream buffering
multiplexing
state sequencing

SimData
data formatting
file system operations

SimHW
simulates hardware signals
used for Virtual Instrument

Record/Playback
Simulator

Simulator-Instrument architecture …

… with SimData class relationships.

Record/Playback
Simulator

SimData class family features
SimData

abstract base class
derived container classes
polymorphic to SimControl
info plus data
self-contained read/write

SimSweep
most basic: one Sweep
basic currency of file management

SimSweepSet
array of SimSweep objects
models one File

new containers …
contain any other SimData class(es)
info plus data: encapsulation

Record/Playback
Simulator

SimData class relationships …

… with data and methods.

(SimData)

FileSpec
+ NotifyWrite()=0
+ NotifyRead()=0
- WriteData()=0
- ReadData()=0

SimControl

SimState
InstrumentState

StreamBuffer
SweepBuffer

+ ManageRecStream()
+ ManagePlyStream()

SimSweep

SweepInfo
Sweep

SimSweepSet

SweepSetInfo
SweepSet

1..n

0..n

Record/Playback
Simulator

Software development environment
C++ language using Standard Template Library (STL)

Microsoft Windows XP application
embedded target
large legacy code base

Component Object Model (COM)
interprocess communication
address remote objects via C++ or VB Script
build custom interface for Operator controls

Microsoft Visual Studio 2005
unmanaged C++ code
Whole Tomato Visual Assist X

IBM Rational Clear Case
source code management
version & release control

TWiki – open source knowledge management platform

Record/Playback
Simulator

Decoding a Sample stream

Record/Playback
Simulator

File, data structure & container issues

inefficiency
info plus data → repetitive info
space and time budgets
write flags

container internal structure
LocationIndex: vector of integers
iterator, insert, delete, modify
write flag

alternate file format
native binary file
primary & alternate file specifiers
flag or enum
write flags

Record/Playback
Simulator

Does it work?

stream of raw Samples
tap from Instrument in Record Mode
input to Instrument in Playback Mode
Yes or No – either they match or not!

processed signal derived from Samples
real-world meaning
simple to test
store original output while Recording
compare with output from Playback

Record/Playback
Simulator

Effect of noise on derived signal Signal from Record and from Playback

Record/Playback
Simulator

Above
2 physical DUT events, moments apart in time …

original signal (dark blue),
difference signal (light blue)

Below
1 physical DUT event and its playback …

original signal (dark blue),
difference signal (light blue)

Record/Playback
Simulator

top
2 physical events

left
signals overlapped

right
original + difference

bottom
1 event + playback

Record/Playback
Simulator

What was accomplished?
specification

problems of error and cost management
solution: a software system
virtual source & processing of Sample streams

development
generalized design template
implementation-dependent features
C++ class package with COM interface

verification
unit testing of package internals
integration with working code branch
use-case behavioral testing

Record/Playback
Simulator

Test & measurement trends
21st century challenges - interdependent

climate change
energy production & conservation
economic realignment
health & environment

science & technology - convergent
engineering
physical & life
information

software as organizer - emergent
embedded computing
digital signal processing (DSP)
object-oriented systems

Record/Playback
Simulator

Role of the Record/Playback method
leverage

exactly specified sequence of Samples
free of noise & drift between procedure runs
representation of DUT

known applications
recorded Sweeps for testing software
verify any processor of Sample streams
include complex setups in test data
capture & reproduce rare/exceptional events

potential applications
stimulus-response model of DUT
algorithmic model for testing or external use
automated production testing
external simulation platform

Record/Playback
Simulator

hypothetical automated test system employing DUT simulation

Record/Playback
Simulator

Record/Playback file compression

must be lossless (requirement to play-back exact sample sequence)

some open-source packages with recognized performance, reliability:

• LZMA: hybrid (dictionary + statistical) encoder

• bzip2: Burrows-Wheeler pre-compressor + statistical encoder

compression factor

file type size, bytes lzma bzip2

ANSI text 59,703 3.469 3.703

Word file with images 668,160 1.120 1.096

Record/Playback 19,508 1.246 1.162

Record/Playback 97,008 1.257 1.198

Record/Playback 1,250,130 1.253 1.215

Comparing two popular open-source compressors

Record/Playback
Simulator

From Shannon information theory we have the quantity entropy, an index of the
“surprise” information content of a data set.

Entropy H is a measure of the “absence of” redundancy R contained in the set:

H = Hmax - R

where Hmax is the maximum entropy attainable by the symbol set, and R (a positive
number representing a negative amount of redundancy) equates to a positive
quantity of entropy. For a data set comprised of n distinct symbols with probability
mass function p, Hmax is the entropy of a uniformly-distributed set of the same n
symbols:

H = ∑k=1→n pk log(1 / pk) = n p log(1 / p) - R
H = n (1/n) log n - R
H = log n - R

Using base-2 logarithms, H is the expected value of the number of bits required to
encode a single symbol. With a uniform distribution, every symbol would require the
same number of bits to encode – that’s maximum entropy: a condition we recognize
intuitively as perfect “randomness” or “disorder”. The greater R, the more variation
exists in the number of bits needed to encode various symbols - and the more
compressible is the data set, in principle.

Record/Playback
Simulator

Hmax = 8 bits (one byte) per symbol
Hmax / H = 1.085

Given the file’s symbol distribution …

Estimate the best compression factor we could
achieve by using statistical encoding.

Record/Playback
Simulator

Algorithmic entropy

Length of the shortest recipe that will reversibly encode a sequence of symbols

Consider the following three sequences of integers:

(a) 3 2 5 1 2 5 4 3 4 5 2 1 3 4 1
(b) 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
(c) 1 1 1 4 4 4 5 5 5 2 2 2 3 3 3

All three sequences contain the same Shannon
entropy, but have different kinds of local
redundancy.

Sequence (b) might be encoded as follows:

1 2 3 4 5 # 3

Burrows-Wheeler Transform

Permute blocks of symbols in order to maximize
local redundancy.

Result is processed to remove the enhanced
redundancy more efficient removal of R

Record/Playback file is not very “dictionary-friendly”.

Dictionary-based encoding
Input stream, output stream, dictionary. Monitor the input.

When a new unique sequence is found, store it in the dictionary,
and output it.

When a matching sequence is found, output only a short key to its
dictionary entry.

Record/Playback
Simulator

SimZip: custom pre-compression + LZMA

SimZip encoder:
• Extract each data component from the source file.
• Apply a corresponding transformation to each component.
• Compress each (transformed) component individually, using LZMA.
• Prepend a byte count to each compressed segment.
• Concatenate the segments, and prepend a non-compressed file header.

SimZip decoder:
• Read the header, note segment information.
• Decatenate the segments (use byte count), decompress using LZMA.
• Apply each corresponding inverse transformation..
• Load the destination file with the recovered data components.

• Built data tools to analyze Record/Playback file.
• Identified 5 data components with characteristic local redundancy patterns
• Built transform functions to enhance local redundancy of each component.
• Exception (dark blue) – no redundancy, LZMA gave negative compression.
• Also built inverse transform functions for decoding.
• Lots of row & column rearrangements, matrix transposition.
• Transform methods are implemented as C# delegate instances.

Record/Playback
Simulator

SimZip compression performance

On the 1.25 MB Record/Playback test file, the SimZip utility improved the
compression factor by about 14% relative to that of the basic LZMA utility.

Amdahl’s Law bounds the performance improvement to a system with a non-improving component:

s ≤ 1 / f

where s is the overall performance improvement, and f is the proportion of the system’s performance
determined by the non-improving component.

Here, f is the dark blue component (previous figure) = 0.622 of file’s byte count.
So theoretical max compression is 1.61 … LZMA alone yielded 1.25 …

Estimate SimZip compression factor as 1.3 to 1.5

