David Bozarth CES 440 - Sonoma State University 31 Oct 2004

Homework 6

2. There are $(10^3 \text{ bit/fr}) / (56 (10^3) \text{ bit s}^{-1}) = (1/56) \text{ s per frame time.}$

Max throughput S for pure ALOHA is (1/(2e)) successful transmissions per frame time.

There are (1/(2e)) fr frtm⁻¹ (100 s) / ((1/56) s frtm⁻¹) = 1030.062 frames transmitted for each period during which each station may transmit once, so there are maximum

1030 stations.

3. At low load there are few collisions, so we expect the typical frame offering to succeed.

So, for pure ALOHA, because a transmission begins immediately, the delay should equal the time it takes to transmit a frame; i.e., the frame time, call it T.

For slotted ALOHA, a frame must wait, on average, 1/2 the slot time, or 1/2 T, to begin transmission. So the delay under low load for slotted ALOHA is (T + 0.5 T) = 1.5 T.

Therefore under low load, pure ALOHA has less delay.

6. a. Channel load G is expected value of (# frames generated / frame time), or P(a frame will be generated within one frame time), so

$$G = (1 - 0.1) = 0.9$$

- b. $S = Ge^{-G} = 0.9e^{-0.9} = 0.366$
- c. An optimal load for slotted ALOHA is G = 1.0, with S = 0.37, so the channel is slightly underloaded.

21. The time for the signal to travel twice the distance between the cable ends is: $2 \text{ km } / (2 (10^5) \text{ km/s}) = 10^{-5} \text{ s}$ The frame must take at least this long to be transmitted. So, min frame length = (10⁹ bits/s) (10⁻⁵ s) = 10⁴ bits = **10 kb**